İletişim Adresi

   
  ORHAN YILDIZ
  FRAKTAL
 


FRAKTAL


Fraktal Nedir ?

Bir şeklin orantılı olarak küçültülmüş veya büyütülmüş modelleriyle inşa edilen örüntülere fraktal adı verilir. Halı veya kilim desenlerini, pisagor ağacını fraktallara örnek verebiliriz.Bir cismi oluşturan parçalar ya da bileşenlerin cismin tamamına benzemesi matematikte “fraktal” olarak adlandırılır.Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde tekrarlanır. Öyle ki bütünün her bir parçası büyütüldüğünde yine cismin bütününe benzer. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince “fractus” sözcüğünden türetilmiştir.

Fraktal ilk hangi tarihte ve kim tarafından bulunmuştur ?

İlk olarak 1975’te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fizikokimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etki-ler meydana getiren yeni bir geometri sisteminin doğmasına yol açmıştır.

Benoit Mandelbrot, IBM laboratuvarlarında çalışmaya başladığında Oyun kuramı, iktisat, emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler, veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare, sinyal gücünü arttırmaktan ileri gidememişti; ama sinyal gücünün arttırılması da tam bir çözüm sağlamamıştı. İletim hatlarındaki gürültü doğası gereği gelişi güzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer almaktaydı. Hatalı periyotların incelenmesi, hata paterninin sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot, bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra, hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki, bu birer saatlik periyotların içinde de yine hatasız bölümler bulunmaktaydı. Mandelbrot, hatalı bölümler daha kısa zaman aralıklarına bölmeye devam etti. Ve sonunda hatasız periyotların halen var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot’un dikkatini çekti: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.

Fraktalın özellikleri Nelerdir ?

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte,    çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde,  gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarından ötürü Eukleidesçi şekilleri ötelenme bakışına sahip değildirler. (Ötelenme bakışımına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

Fraktalların bir başka önemli özelliği de, fraktal boyut olarak adlandırılan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakış açısı ne kadar değiştirilirse değiştirilsin, hep aynı kalan fraktalların bir özelliğidir. Eukleidesçi boyutun tersine fraktal boyut, genellikle tam sayı olmayan bir sayıyla, yani bir kesir ile ifade edilir. Fraktal boyut, bir fraktal eğri yardımıyla anlaşılabilir.

Oluşturulmasının her aşamasında bu tip bir eğrinin çevre uzunluğu 4/3 oranında büyür. Fraktal boyut (D)4′e eşit olabilmesi için alınması gereken kuvvetini gösterir; yani;

3d =4 bu bakımdan fraktal eğriyi niteleyen boyut log4/log3 ya da kabaca 1,26′dır. Fraktal boyut, Eukleidesçi olmayan belirli bir biçimin karmaşıklığını ve şekil nüanslarını açığa çıkarır.

Fraktal Nerelerde Yararlanılır Kullanılır ?

Kendine benzerlik ve tamsayı olmayan boyutlu kavramlarıyla birlikte fraktal geometri, istatistiksel mekanikte, özellikle görünürde  rastgele özelliklerden oluşan fiziksel sistemlerin incelenmesinde giderek daha yaygın olarak kullanılmaya başlanmıştır. Örneğin, gökada kümelerinin evrendeki dağılımının saptanmasında ve akışkan burgaçlanmalarına ilişkin problemlerin çözülmesinde fraktal benzetimlerden (simülasyon) yararlanılmaktadır. Fraktal geometri bilgisayar grafiklerinde de yararlı olmaktadır. Fraktal algoritma ise, engebeli dağlık araziler ya da ağaçların karışık dal sistemleri gibi karmaşık, çok düzensiz doğal cisimlerin gerçektekine benzer görüntülerinin oluşturulabilmesini olanaklı kılmıştır.


 

 
 
 
Z i Y A R E T C i - D E F T E R i
orhanyildiz.tr.gg
A N A - S A Y F A Y A - G i T
 
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol